Copied to
clipboard

G = C32xC12order 108 = 22·33

Abelian group of type [3,3,12]

direct product, abelian, monomial, 3-elementary

Aliases: C32xC12, SmallGroup(108,35)

Series: Derived Chief Lower central Upper central

C1 — C32xC12
C1C2C6C3xC6C32xC6 — C32xC12
C1 — C32xC12
C1 — C32xC12

Generators and relations for C32xC12
 G = < a,b,c | a3=b3=c12=1, ab=ba, ac=ca, bc=cb >

Subgroups: 84, all normal (6 characteristic)
C1, C2, C3, C4, C6, C32, C12, C3xC6, C33, C3xC12, C32xC6, C32xC12
Quotients: C1, C2, C3, C4, C6, C32, C12, C3xC6, C33, C3xC12, C32xC6, C32xC12

Smallest permutation representation of C32xC12
Regular action on 108 points
Generators in S108
(1 81 108)(2 82 97)(3 83 98)(4 84 99)(5 73 100)(6 74 101)(7 75 102)(8 76 103)(9 77 104)(10 78 105)(11 79 106)(12 80 107)(13 66 25)(14 67 26)(15 68 27)(16 69 28)(17 70 29)(18 71 30)(19 72 31)(20 61 32)(21 62 33)(22 63 34)(23 64 35)(24 65 36)(37 85 59)(38 86 60)(39 87 49)(40 88 50)(41 89 51)(42 90 52)(43 91 53)(44 92 54)(45 93 55)(46 94 56)(47 95 57)(48 96 58)
(1 55 14)(2 56 15)(3 57 16)(4 58 17)(5 59 18)(6 60 19)(7 49 20)(8 50 21)(9 51 22)(10 52 23)(11 53 24)(12 54 13)(25 107 92)(26 108 93)(27 97 94)(28 98 95)(29 99 96)(30 100 85)(31 101 86)(32 102 87)(33 103 88)(34 104 89)(35 105 90)(36 106 91)(37 71 73)(38 72 74)(39 61 75)(40 62 76)(41 63 77)(42 64 78)(43 65 79)(44 66 80)(45 67 81)(46 68 82)(47 69 83)(48 70 84)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)

G:=sub<Sym(108)| (1,81,108)(2,82,97)(3,83,98)(4,84,99)(5,73,100)(6,74,101)(7,75,102)(8,76,103)(9,77,104)(10,78,105)(11,79,106)(12,80,107)(13,66,25)(14,67,26)(15,68,27)(16,69,28)(17,70,29)(18,71,30)(19,72,31)(20,61,32)(21,62,33)(22,63,34)(23,64,35)(24,65,36)(37,85,59)(38,86,60)(39,87,49)(40,88,50)(41,89,51)(42,90,52)(43,91,53)(44,92,54)(45,93,55)(46,94,56)(47,95,57)(48,96,58), (1,55,14)(2,56,15)(3,57,16)(4,58,17)(5,59,18)(6,60,19)(7,49,20)(8,50,21)(9,51,22)(10,52,23)(11,53,24)(12,54,13)(25,107,92)(26,108,93)(27,97,94)(28,98,95)(29,99,96)(30,100,85)(31,101,86)(32,102,87)(33,103,88)(34,104,89)(35,105,90)(36,106,91)(37,71,73)(38,72,74)(39,61,75)(40,62,76)(41,63,77)(42,64,78)(43,65,79)(44,66,80)(45,67,81)(46,68,82)(47,69,83)(48,70,84), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)>;

G:=Group( (1,81,108)(2,82,97)(3,83,98)(4,84,99)(5,73,100)(6,74,101)(7,75,102)(8,76,103)(9,77,104)(10,78,105)(11,79,106)(12,80,107)(13,66,25)(14,67,26)(15,68,27)(16,69,28)(17,70,29)(18,71,30)(19,72,31)(20,61,32)(21,62,33)(22,63,34)(23,64,35)(24,65,36)(37,85,59)(38,86,60)(39,87,49)(40,88,50)(41,89,51)(42,90,52)(43,91,53)(44,92,54)(45,93,55)(46,94,56)(47,95,57)(48,96,58), (1,55,14)(2,56,15)(3,57,16)(4,58,17)(5,59,18)(6,60,19)(7,49,20)(8,50,21)(9,51,22)(10,52,23)(11,53,24)(12,54,13)(25,107,92)(26,108,93)(27,97,94)(28,98,95)(29,99,96)(30,100,85)(31,101,86)(32,102,87)(33,103,88)(34,104,89)(35,105,90)(36,106,91)(37,71,73)(38,72,74)(39,61,75)(40,62,76)(41,63,77)(42,64,78)(43,65,79)(44,66,80)(45,67,81)(46,68,82)(47,69,83)(48,70,84), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108) );

G=PermutationGroup([[(1,81,108),(2,82,97),(3,83,98),(4,84,99),(5,73,100),(6,74,101),(7,75,102),(8,76,103),(9,77,104),(10,78,105),(11,79,106),(12,80,107),(13,66,25),(14,67,26),(15,68,27),(16,69,28),(17,70,29),(18,71,30),(19,72,31),(20,61,32),(21,62,33),(22,63,34),(23,64,35),(24,65,36),(37,85,59),(38,86,60),(39,87,49),(40,88,50),(41,89,51),(42,90,52),(43,91,53),(44,92,54),(45,93,55),(46,94,56),(47,95,57),(48,96,58)], [(1,55,14),(2,56,15),(3,57,16),(4,58,17),(5,59,18),(6,60,19),(7,49,20),(8,50,21),(9,51,22),(10,52,23),(11,53,24),(12,54,13),(25,107,92),(26,108,93),(27,97,94),(28,98,95),(29,99,96),(30,100,85),(31,101,86),(32,102,87),(33,103,88),(34,104,89),(35,105,90),(36,106,91),(37,71,73),(38,72,74),(39,61,75),(40,62,76),(41,63,77),(42,64,78),(43,65,79),(44,66,80),(45,67,81),(46,68,82),(47,69,83),(48,70,84)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108)]])

C32xC12 is a maximal subgroup of   C33:7C8  C33:8Q8  C33:12D4

108 conjugacy classes

class 1  2 3A···3Z4A4B6A···6Z12A···12AZ
order123···3446···612···12
size111···1111···11···1

108 irreducible representations

dim111111
type++
imageC1C2C3C4C6C12
kernelC32xC12C32xC6C3xC12C33C3xC6C32
# reps112622652

Matrix representation of C32xC12 in GL3(F13) generated by

100
090
001
,
900
090
001
,
1100
020
002
G:=sub<GL(3,GF(13))| [1,0,0,0,9,0,0,0,1],[9,0,0,0,9,0,0,0,1],[11,0,0,0,2,0,0,0,2] >;

C32xC12 in GAP, Magma, Sage, TeX

C_3^2\times C_{12}
% in TeX

G:=Group("C3^2xC12");
// GroupNames label

G:=SmallGroup(108,35);
// by ID

G=gap.SmallGroup(108,35);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-2,270]);
// Polycyclic

G:=Group<a,b,c|a^3=b^3=c^12=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<